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Abstract A study on the codominant scoring of AFLP

markers in association panels without prior knowledge on

genotype probabilities is described. Bands are scored

codominantly by fitting normal mixture models to band

intensities, illustrating and optimizing existing methodol-

ogy, which employs the EM-algorithm. We study features

that improve the performance of the algorithm, and the

unmixing in general, like parameter initialization, restric-

tions on parameters, data transformation, and outlier

removal. Parameter restrictions include equal component

variances, equal or nearly equal distances between com-

ponent means, and mixing probabilities according to

Hardy–Weinberg Equilibrium. Histogram visualization of

band intensities with superimposed normal densities, and

optional classification scores and other grouping informa-

tion, assists further in the codominant scoring. We find

empirical evidence favoring the square root transformation

of the band intensity, as was found in segregating popu-

lations. Our approach provides posterior genotype proba-

bilities for marker loci. These probabilities can form the

basis for association mapping and are more useful than the

standard scoring categories A, H, B, C, D. They can also be

used to calculate predictors for additive and dominance

effects. Diagnostics for data quality of AFLP markers are

described: preference for three-component mixture model,

good separation between component means, and lack of

singletons for the component with highest mean. Software

has been developed in R, containing the models for normal

mixtures with facilitating features, and visualizations. The

methods are applied to an association panel in tomato,

comprising 1,175 polymorphic markers on 94 tomato

hybrids, as part of a larger study within the Dutch Centre

for BioSystems Genomics.

Introduction

Amplified fragment length polymorphism (AFLP)

(Vos et al. 1995) is a widely used DNA fingerprinting

system. The physical end product of the AFLP procedure is

a slab gel containing bands at different positions within

columns of the gel. Instead of gels, capillary systems are

nowadays often used. The columns are called lanes, and

correspond to the different individual genomes (individu-

als). The bands visualize amplified DNA fragments of

specific lengths, traveling in the lanes by electrophoresis.

The position of a band within a lane is mainly determined

by the size of the fragment, with shorter fragments trav-

eling further. The pattern of bands within a lane is called a

profile. Usually, AFLP bands are scored dominantly, i.e.,

binary, as absent or present. In this way, AFLP bands are

dominant markers, which do not distinguish between

individuals with one copy of the DNA fragment (hetero-

zygous individuals) and two copies (homozygous individ-

uals). However, the gels or capillary systems allow the

intensities of the band to be scored as well. Assuming that

the intensity of a band is a measure of the amount of

amplified DNA, the band intensity can be exploited to infer

the copy number of a DNA fragment. In the case of diploid

organisms, an individual with the DNA fragment on two
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homologous chromosomes (homozygous AA) should have

a more intense band than an individual with the DNA

fragment on only one of two homologous chromosomes

(heterozygous Aa). The heterozygous individual, in turn,

should have a more intense band than an individual lacking

the fragment completely (homozygous absent aa). There-

fore, it must be possible to infer the copy number of an

AFLP fragment from the band intensity, making the AFLP

marker a codominant marker. Scoring the copy number of

the AFLP fragment is also named genotype calling.

The idea to codominantly score AFLPs using the band

intensities is not new. An early mention can be found in

van Eck et al. (1995), and later Piepho and Koch (2000),

and, in a reaction, Jansen et al. (2001) published about the

statistical principles of the approach. These authors illus-

trate their methods by codominantly scoring AFLP markers

from segregating F2 populations, with a priori known

genotype frequencies 0.25, 0.50, and 0.25 for AA, Aa, and

aa, respectively. As Meudt and Clarke (2007) report,

codominant AFLP scoring so far is limited to model

organisms and commercial crop organisms, for which

genetic information already exists for accurate identifica-

tion of the codominant scores. Vuylsteke (2007) mentions

that codominant scoring of AFLP markers has become

routine in segregating populations, as in F2 or backcross

populations. Examples of studies of segregating popula-

tions, with known segregation ratio for the offspring, are,

e.g., Castiglioni et al. (1999), Reamon-Büttner et al.

(1998), and Deniau et al. (2006).

The aim of our study is to illustrate and optimize

existing methodology for the codominant scoring of AFLP

markers using data from an association panel, without

a priori knowledge of allele frequencies. The association

panel consists of a collection of 94 tomato hybrids, for

which, due to confidentiality reasons, no pedigree infor-

mation was made available.

An overview of the dataset, and analyses concerning

diversity and linkage disequilibrium, containing a concise

description of the codominant scoring, can be found in van

Berloo et al. (2008b). Commercially available software,

such as Quantar Pro (Keygene products BV 2004) from the

private company Keygene NV, is rather limited in output

facilities, as it gives hard classifications only, and does not

contain options to back up the codominant scoring in case

of an association panel. We therefore developed software,

and used it for the codominant scoring of the AFLP data. In

the present paper, we describe

1. the method of codominant scoring of AFLP bands by

normal mixture models;

2. some features, that may enhance or stabilize the

unmixing of the groups in association panels, where

the mixing proportions are unknown in advance;

3. the output from codominant scoring: (a) posterior

genotype probabilities of the three codominant classes,

replacing the hard A–B–H–C–D classification which is

usually given; (b) predictors for additive and domi-

nance effects in QTL analysis calculated from the

posterior class probabilities;

4. the dataset, used for illustration of the codominant

scoring, consisting of an unstructured association panel

of 94 tomato hybrids;

5. the software we developed for the codominant scoring

of AFLP profiles in association panels by normal

mixture models;

6. an application of the methodology, using the software,

to the collection of tomato hybrids.

Materials and methods

Codominant scoring of AFLP band intensities

by normal mixture models

Band intensities

The intensity of an AFLP band, named optical density by

Piepho and Koch (2000), is a non-negative number, indi-

cating the darkness of a band on a gray scale. Because band

intensities vary from lane to lane (e.g., caused by differ-

ences in amount of DNA loaded in a lane), and due to

background variation in intensity and image artifacts, the

raw band intensities need to be corrected to make bands

comparable between lanes. Corrections can be done in

different ways. Piepho and Koch (2000) suggest to remove

systematic trends discernible from monomorphic bands

with the use of quadratic polynomial regression models and

random lane effects, and to check for spatial correlation. In

the present study, we use the correction as performed by

the proprietary software of Keygene NV. This correction

accounts for total lane intensity and intensity of mono-

morphic bands, and divides the intensities row-wise (per

marker) by the maximum intensity per row, resulting in a

range 0–1.

Codominant scoring

The (corrected) band intensity is related to the amount of

amplified DNA at the band position. We assume a

monotonous relationship: more amplified DNA tends to

produce darker bands. This means for diploid organisms,

such as tomato, that a homozygous individual with two

copies of a fragment tends to have a band with higher

intensity than a heterozygous individual with a single copy,

which, in turn, has a higher intensity band than an
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individual lacking the fragment completely. Codominant

scoring of a band is the prediction of the copy number of

the fragment (or genotype class AA, Aa, or aa) from the

intensity of the band. Codominant scoring is straightfor-

ward in the case that the intensities fall into three well-

separated groups. But more often, groups overlap, e.g.,

because the relationship between band intensity and copy

number is non-linear, as indicated by Piepho and Koch

(2000). The intensity may be upwardly bounded due to

saturation, hampering the discrimination between hetero-

zygous and homozygous individuals. Other problems,

blurring simple inference on zygosity, are errors in the

AFLP procedure itself [like amplification errors in the

polymerase chain reaction (PCR), and gel mobility errors],

and measurement errors of the band intensities. To take

account of these problems, a formal approach using a

statistical model is beneficial.

Normal mixture models

Statistically speaking, codominant scoring is a type of

cluster analysis with a predefined number of classes (three

in the case of diploid organisms). Although ordinary clus-

tering techniques could be used, the common approach

described in the literature is to fit a Gaussian (or normal)

mixture model. This is an example of model-based clus-

tering (Fraley and Raftery 2002), because a proper statis-

tical model is used to describe the data. For an association

panel of n individuals, we have per marker n intensities,

labeled y1, ..., yn. The Gaussian mixture model (McLachlan

and Peel 2000) for intensity yi of variety i is:

f ðyiÞ ¼
X3

j¼1

pjfjðyiÞ ð1Þ

with fj the density of a normal distribution with mean lj

and standard deviation rj. The mixing probability pj is the

prior probability that a randomly drawn individual belongs

to group, or component, j. In the standard situation, we

have three groups: 1 = no copies, 2 = one copy, and

3 = two copies. We assume for the expected intensities lj,

that l1 \l2 \ l3. The posterior probability of cultivar i to

belong to group k (k = 1, 2, 3) is

sik ¼
pkfkðyiÞP3
j¼1 pjfjðyiÞ

; ð2Þ

which are conditional genotype probabilities given the

marker phenotype (intensity). In total, eight unknown

parameters are to be estimated: l1, l2, l3, r1, r2, r3, and

p1, p2 (and p3 = 1 - p1 - p2), using maximum likeli-

hood. For segregating populations parameter values may be

known, e.g., in case of F2 populations, the segregation ratio

is 1:2:1, hence p1 = 0.25, p2 = 0.5, p3 = 0.25. We use

the EM-algorithm (Dempster et al. 1977) to get maximum

likelihood estimates, treating the situation as an incomplete

data problem with missing class memberships, as in Jansen

(1993) and Piepho and Koch (2000). In the algorithm, the

E-step, in which estimates of the posterior class probabil-

ities ŝik are returned by conditioning on data and parame-

ters, and M-step, returning new parameter estimates

l̂k; r̂k; p̂k; alternate until convergence. The M-step consists

of separate update steps for pj, fitting a generalized linear

model for multinomial data to the weights ŝik; and for lj

and rj, fitting a linear model allowing for 3 group means

(ANOVA model) and weights ŝik to the replicated

intensities.

In non-standard situations, the number of components

g of the normal mixture model may deviate from 3. We

refer to item 2 of the next section. Mixture models are a

topic of ongoing statistical research, because problems

exist with the identifiability of parameters, and parame-

ters occurring at the boundary of the parameter space.

Therefore, most classical asymptotic results cannot be

directly applied. Here, we supply a short review of

recent work on mixture models. Böhning et al. (2007)

give in an editorial an outline of the current state of the

art. Slightly older is the book by McLachlan and Peel

(2000), containing a wealth of references. Particularly,

interesting aspects of mixture modeling for our situation

are: (1) hypothesis testing, (2) order selection, i.e.,

determination of the number of groups, (3) robustifica-

tion. Recent work on hypothesis testing for the special

case of testing homogeneity (i.e., discriminating a one-

component from a two-component mixture) is Chen and

Li (2009), Li et al. (2009), and Garel (2007). The case

of testing homogeneity is not of great interest in our

situation, though. Other work focuses on testing homo-

scedastic versus heteroscedastic normal mixtures (e.g.,

Lo 2008), but conclusions are meager. The topic of order

selection has kept statisticians busy for long. A worth-

while reference on hypothesis testing for the number of

components is Feng and McCulloch (1994), but they

describe the case of unequal variances, which we avoid

(see following section). A very recent study on order

selection is Chen and Khalili (2008) using a penalized

likelihood approach. Comparing with other criteria in a

simulation study, they conclude that their approach per-

forms generally but not always better. Normality-based

methods for estimation have the problem of sensitivity to

outliers. Different authors studied the problem. Recent

studies are McLachlan et al. (2006), using mixtures of t

distributions, and Cuesta-Albertos et al. (2008), using a

mix of initial robust clustering for subsamples and

maximum likelihood. From this overview we learn that

the final word on these topics has not been said.
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Features for enhanced and stabilized unmixing,

data quality and model selection

We study a number of features relevant to the codominant

scoring methodology in association panels. Some of them

relate to the EM-algorithm, aiming at enhancement or

stabilization of the unmixing, others at assessment of the

quality of the AFLP marker data for codominant scoring, or

model selection.

1. Starting values

To start up, the EM-algorithm needs either starting

values of the parameters (lk, rk, pk), followed by an

E-step, or starting values of posterior probabilities

(sik), followed by an M-step. Badly chosen starting

values could result in convergence to a local likelihood

maximum or non-convergence of the algorithm.

We investigate two types of starting values for the

EM-algorithm:

(a) guesstimates of the parameters, based on the

number of groups (g), and minimum and maxi-

mum of the intensities, assuming equidistant l̂k;

constant r̂k ¼ ðmax�minÞ=2g; and constant

p̂k ¼ 1=g;
(b) cluster-based starting values, obtained from a

hierarchical cluster analysis (UPGMA), cutting

the dendrogram at the desired number of clusters,

and calculating means, standard deviations, and

relative frequencies within the clusters.

2. Restrictions on parameters

The modeling principle of parsimony dictates to find

models as simple as possible, yet capturing the essence

of the data. In our case, putting restrictions on standard

deviations, means, and/or prior probabilities may be

beneficial.

(a) Standard deviations rj

Models with different standard deviations for the

different components tend to produce unstable

results, especially if the number of observations

in a group is small. Therefore, a model with a

single standard deviation, common to all compo-

nents, is to be preferred. Usually a data transfor-

mation is needed to achieve approximate

homoscedasticity, see 2.

(b) Means lj

Assuming a linear relationship between band

intensity and copy number, the restriction

l2 - l1 = l3 - l2, or l1 - 2l2 ? l3 = 0,

may be in place. With this restriction only two

mean parameters are left. This restriction can be

easily built into the mixture model by fitting at

the M-step for lk not an ANOVA model, but a

simple linear regression model with the copy

number as regressor. A less stringent restriction,

still preventing the means to ‘‘go anywhere’’,

penalizes the second-order differences

between ls, but needs a smoothing parameter k
to be specified. This leads to penalized weighted

least squares at the M-step of the EM-algorithm.

(c) Prior probabilities pj

In the codominant scoring of an association

panel, no knowledge is available about the prior

probabilities pj. Yet it may be fruitful to restrict

the parameters assuming Hardy–Weinberg equi-

librium (HWE), as in Jansen (1994), rendering a

single parameter p, representing the allele fre-

quency of the marker in the population. The

restrictions on pj according to HWE are:

p1 = p2, p2 = 2p(1 - p), p3 = (1 - p)2.

3. Allowance for heteroscedasticity

Band intensities generally show non-constant standard

deviation: larger intensities tend to have larger vari-

ability. Taking the relationship between variance and

mean into consideration, we may arrive at a simpler

model with a single dispersion parameter, as described

in 2. This could be done in different ways:

(a) Transformation of band intensity

Jansen et al. (2001) mention that band intensities

need to be square-root transformed, as this leads

to distributions with constant variance. Note,

however, that this transformation stabilizes the

variance only if the variance is proportional to the

mean. To allow for other variance–mean rela-

tionships, we will study power transformations

yk, with power k possibly different from 0.5.

Piepho and Koch (2000) study (Box-Cox) power

transformations of the band intensity, optimizing

the power by maximum likelihood to achieve

normality.

(b) Non-normal mixtures

Another way to deal with the relationship

between variance and mean is to model it

directly, allowing a mixture of non-normal

distributions. To this end, at the M-step for l
a generalized linear model may be fitted with

variance proportional to the mean and log

link, using quasi likelihood (McCullagh and

Nelder 1989). We will not pursue this topic

further.

4. Diagnostics for quality of AFLP band intensity data in

codominant scoring

(a) Number of groups g

In case of diploid organisms we assume mixture
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models with three components, allowing for 0, 1,

or 2 copies of a DNA fragment. We may,

however, face situations with only two compo-

nents, if 0 or 1 copy, 0 or 2 copies, or 1 or 2

copies of a DNA fragment occur in the collection

of individuals. Even situations with more than

three components cannot be ruled out, because

collisions may have occurred (Gort et al. 2008).

In case of collision, two or more different

fragments of the same length were amplified for

one or more individuals, appearing as single

bands. Each fragment may then occur singly

(heterozygous) or doubly (homozygous). The

band intensity is expected to be highest for the

individual with collision. Outliers in band inten-

sity from unknown origin could also cause the

number of components to deviate from the

expected g = 3. The relative goodness of fit of

the mixture model with three components, com-

pared to models with other numbers of compo-

nents, will be used as diagnostic for data quality

of an AFLP marker for codominant scoring (see

also paragraph on ‘‘Model comparison’’ below).

(b) Separation of groups

If groups are not well separated, it may be

difficult to infer the correct number of groups.

Lindsay (1995, pp. 18–19) mentions that, for a

two-component normal mixture with means less

than two standard deviations apart (correspond-

ing to a unimodal mixture), there is almost no

information about the mixing proportion. With a

separation of four standard deviations or more the

information is almost complete. To check the

separation of groups, we propose to calculate for

each AFLP marker sep1 ¼ ðl̂2 � l̂1Þ=r̂ and

sep2 ¼ ðl̂3 � l̂2Þ=r̂ in the three-component nor-

mal mixture model with constant standard devi-

ation r. We call the separation ‘‘poor’’ if sep1 B 2

or sep2 B 2, ‘‘moderate’’ if not ‘‘poor’’, but

2 \ sep1 B 4 or 2 \ sep2 B 4, and ‘‘good’’ if

sep1 [ 4 and sep2 [ 4. The classification of the

separation is a second diagnostic for data quality

of AFLP markers in codominant scoring.

(c) Outliers

For some markers, one or two individuals may

have excessively high intensities. We use two

simple approaches: (1) identify outlying obser-

vations by simple visual inspection of the histo-

gram (see item 2), and, if needed, refit the

mixture model after removal of these observa-

tions; (2) check the number of individuals in the

component with highest (and lowest) group

mean, according to the classification by the

mixture model; if a single observation (singleton)

is observed, the band intensity may be outlying.

Lack of outliers is a third diagnostic for data

quality.

5. Visualization of data and results

As a helpful tool in judging the fit of a mixture model

to the data, we use histogram visualization of the band

intensities with superimposed density plots, as in

Jansen et al. (2001), and optionally a color-coded hard

classification of individuals. Because the mixture

model is fitted to corrected intensities (in the range

0-1, see ‘‘Codominant scoring of AFLP band inten-

sities by normal mixture models’’), it may be helpful to

add as extra information to the histogram the minimum

and maximum value of the raw uncorrected intensities

(in the range 0 to &106), because these reveal relevant

information about the gray levels of the bands. Plotting

optionally extra grouping information, like tomato

type (with levels beef, round, or cherry in the tomato

dataset), along the top part of the histogram, may also

help the interpretation of the mixture results.

Model comparison

Comparison of nested models is usually done by likelihood

ratio tests, but in the case of mixture models theoretical

problems of non-identifiability arise, as earlier described.

We take interest in

1. Testing for Hardy–Weinberg equilibrium to test the

null hypothesis of mixing probabilities according to

HWE, we use the likelihood ratio test (LRT), assuming

under H0 a v2
1 distribution of the test statistic

LR = 2(LL(FM) - LL(RM)), with LL(FM) the log-

likelihood of the full model with unrestricted pi, and

LL(RM) the log-likelihood of the restricted model with

estimated pi according to HWE. Given the theoretical

problems with LRTs in mixture models, we underpin

this approach by a small simulation study. We simulate

band intensities for 100 individuals, by sampling from

a three-component normal mixture with means l =

0.3, 0.5, 0.7, a range of standard deviations r = 0.025,

0.030, 0.035, 0.040, 0.045, 0.050, and a range of allele

frequencies p = 0.5, 0.4, 0.3, 0.2, 0.1 (this set of

parameters results in histograms similar to those that

occur in the tomato dataset used for illustration, see

‘‘Data: association panel of tomato hybrids’’). For the

simulation, we first sample the genotypes of 100

individuals, using a multinomial distribution with prior

probabilities p2, 2p(1 - p), and (1 - p)2, resulting in

counts (k1, k2, k3) representing k1 homozygous present,

k2 heterozygous, and k3 homozygous absent genotypes.

Theor Appl Genet (2010) 121:337–351 341

123



If p B 0.2, sets of genotypes may be sampled with

k1 = 0 (roughly 38% if p = 0.1, and 1.7% if p = 0.2),

which we discard, as we would do for real data. In

these cases we are sampling from a truncated multi-

nomial distribution. Given the genotypes, we sample ki

intensities from N(li, r2). From the fitted full and

reduced models LR is calculated, and compared to the

95% critical value 3.84 of the v2
1 distribution. This

procedure is replicated 10,000 times, and type I error

rates are calculated.

2. Order selection, i.e., the choice of the number of

components of the mixture model. Following Fraley

and Raftery (2002), we use the Bayesian Information

Criterion BIC = - 2LL ? d 9 ln(n) to compare

models with different numbers of groups, where d is

the number of parameters, and n is the number of

observations. A smaller value of BIC indicates a better

fitting model. The ‘‘best fitting model’’ thus corre-

sponds to best fitting according to BIC.

In other cases we compare fits of models by comparing

BICs. If the compared models have equal numbers of

parameters, the comparison by BIC is equivalent to the

comparison by LL.

Output from codominant scoring

Hard classification versus posterior probabilities

The usual result from the codominant scoring of AFLP

markers is a hard classification of markers into categories.

The classification can be done in different ways. Piepho

and Koch (2000) suggest to take the category with highest

posterior probability. The proprietary genotyping software

of Keygene NV uses classification rules suggested by

Jansen et al. (2001): genotype i is classified as:

A = homozygous = genotype class AA (=2 copies), if the

posterior probability ŝi3� 0:98;
B = homozygous absent = aa (=0 copies), if ŝi1� 0:98;

H = heterozygous = Aa (=1 copy), if ŝi2� 0:98;

C = not homozygous = not AA (=0 or 1 copy), if none of

first three conditions is satisfied, but ŝi1 þ ŝi2� 0:98 for

an intensity yi in the left tail of the normal distribution

with mean l̂2;
D = not homozygous absent = not aa (=1 or 2 copies),

if none of first three conditions is satisfied, but

ŝi2 þ ŝi3� 0:98 for an intensity yi in the right tail of

the normal distribution with mean l̂2;

U = missing.

The threshold probability 0.98 is the default value, but

other values can be chosen as well. We notice that an extra

region of doubt is necessary, because it may happen that

genotypes exist, which cannot be classified as A, B, H, C or

D. This may occur if the groups are not well separated,

so that for some genotypes, ŝi1 þ ŝi2\0:98; but also

ŝi2 þ ŝi3\0:98: The right-hand side plot of Fig. 1 shows an

example. We call this extra region of doubt Z = unknown,

meaning 0, 1, or 2 copies. The left-hand side plot shows the

classification if probability threshold 0.95 is used. In that

case all genotypes can be classified as A, B, H, C, or D.

The above-mentioned commonly used hard classifica-

tion has a number of disadvantages. For instance, the

classification rule, following from the probability threshold

0.98, is rather arbitrarily chosen. Furthermore, it is not

clear how to deal with genotypes, once they are classified

into one of the regions of doubt. Therefore, we propose to

use instead the set of three posterior probabilities

ðŝi1; ŝi2; ŝi3Þ as result of the codominant scoring for geno-

type i. Using this approach, each genotype is allowed to

belong to more than one class, with the posterior proba-

bilities indicating the levels of membership to the classes.

This type of clustering is called fuzzy clustering, see, e.g.

Bezdek (1981). The resulting posterior genotype proba-

bilities can be used in association mapping, analogously to

the use of conditional QTL genotype probabilities given

flanking marker information in case of QTL linkage map-

ping for biparental crosses.

Predictors for additive and dominance effects

Given the three posterior probabilities, it is straightforward

to calculate predictors for the additive and dominance effects

of the loci. The additive predictor for an individual is defined

as xa ¼ ŝ3 � ŝ1;with values between -1 and 1. The value -1

is obtained for loci which are classified as B (=aa) with

probability 1. A locus has additive predictor value 1 if it is

classified as A (=AA) with probability one. The dominance

predictor xd depends only on the probability of a heterozy-

gous genotype, and is defined as xd ¼ ŝ2; with values

between 0 and 1. The additive and dominance predictors may

be used, e.g., in association mapping, relating the codomi-

nant scores to phenotypic information by mixed models. A

paper on genome-wide association mapping using these

scores is in preparation.

Data: association panel of tomato hybrids

Within the Centre for BioSystems Genomics, a Dutch

plant genomic initiative (van Berloo et al. 2008a), one

project aims at processes and mechanisms affecting fruit

quality in tomato. Within this project an association panel,

consisting of a diverse set of 94 tomato hybrids, was

genotyped using AFLP with gel electrophoresis

(van Berloo et al. 2008b). This set consists of 20 beef,
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21 cherry, and 53 round tomato hybrids. The AFLP fin-

gerprinting was performed at Keygene NV using standard

in-house developed protocols. Fifty primer combinations

were used, labeled A, B, …, Z, AA, AB, …, AX, based

mostly on EcoRI/MSeI and some PstI/MSeI restriction

enzyme combinations. The scoring range is approximately

50–550. Typically, between 50 and 100 bands are visible

per primer combination per variety, the majority of which

is monomorphic. Band intensities of a total of 1,175

polymorphic bands were scored by Keygene NV using the

proprietary genotyping software. For 378 bands the map

position is available from an integrated proprietary linkage

map. We study both raw uncorrected intensities, with

values in the range 0 to &106, and corrected intensities

with values in the range 0-1. We refer to the dataset of

band intensities of 1,175 AFLP markers on 94 tomato

hybrids as the ‘‘tomato data’’.

Studying the scoring features in the complete

tomato dataset

We study how the features mentioned in ‘‘Features for

enhanced and stabilized unmixing, data quality and model

selection’’ help in the codominant scoring of all 1,175

AFLP markers in the tomato data, focusing on the

following topics.

1. Starting values of parameters. We study the perfor-

mance of the two types of parameter initialization for

the EM-algorithm. For each marker, mixture models

with 2, 3, 4 and 5 components are fitted, once using

guesstimates and once using cluster-based starting

values. We tabulate how often each type of starting

values performs best (highest LL).

2. Power transformation of the band intensity. We try to

find empirical evidence favoring the square root

transformation, as suggested by Jansen et al. (2001),

in two ways:

(a) Comparing the fits of homoscedastic and

heteroscedastic three-component mixture models

for power transformations in the range 0.25–1.0

with BIC. Per transformation we count how often

the homoscedastic model (with d = 6 parame-

ters) is preferred over the heteroscedastic model

(with d = 8). If the estimated standard deviation

r̂ in a mixture component is smaller than 0.01, or

if a component contains a single observation, we

fix r̂ at 0.01. The power transformation, giving

most often variance stabilization, is called best

with respect to variance.

(b) Comparing the fits of mixture models with 2, 3,

4, and 5 components for power transformations in

the range 0.25–1.0, using BIC. Per power trans-

formation and marker, the best fitting model is

selected. The transformation, selecting most

often the preferred three-component mixture

model, is called best with respect to order

selection.

3. Diagnostics for data quality of the 1,175 AFLP

markers:

(a) number of components: compare g-component

homoscedastic mixture models (with g =

2, 3, 4, 5 components, and d = 4, 6, 8, 10

parameters, respectively) by BIC;

(b) separation: count how often separation is poor,

moderate or good in the best-fitting g-component

model;

(c) outliers: count how often singletons exist in the

first or last component in the best-fitting g-com-

ponent model.

4. Hardy–Weinberg equilibrium. We test the null hypo-

thesis of mixing probabilities according to HWE for a

subset of markers, using the LRT described in

‘‘Features for enhanced and stabilized unmixing, data

quality and model selection’’. We use a selection of

300 mapped markers, following the paper by van

Berloo et al. (2008b). Out of the 797 unmapped

markers, we select 349 with best fitting three-compo-

nent mixture model.

a bFig. 1 Histograms of band

intensities of marker 1,039 with

superimposed normal densities.

Subplots a and b show color-

coded hard classifications based

on probability thresholds 0.95,

and 0.98, respectively. In the

last case, some observations are

classified as unknown (Z)
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Results

Software

We developed software routines in R (Ihaka and Gentleman

1996) for the codominant scoring of AFLP band intensities

in an association panel, using the EM-algorithm. We built

features into the software, as described in Materials and

methods, allowing for different starting values of parame-

ters, transformation of the response, restriction on parame-

ters, different numbers of components, and for the types

of output as described earlier. For a more detailed

description of the software we refer to ‘‘Appendix’’. All

plots and mixture model output in this paper are results

from applications of the R routines.

Examples

Examples with well fitting mixture models

In Fig. 2, we show some examples of codominantly

scored AFLP markers with well fitting three-component

homoscedastic normal mixture models. The corrected

band intensities are square-root transformed, unless

mentioned otherwise. In subplots a and b, no variety is

classified into a region of doubt. In subplots c and d, a

few hybrids are classified as ‘‘D’’. We added the

boundaries of the classes into the plot, and minimum and

maximum value of the raw band intensities. The variety

in plot c classified as ‘‘D’’ has posterior probabilities

ðŝi1; ŝi2; ŝi3Þ ¼ ð0; 0:050; 0:950Þ:

Examples of features helping unmixing

Figure 3 illustrates problems encountered in the codomi-

nant scoring of AFLP band intensities of the tomato data-

set, that can be handled with the features described in

‘‘Features for enhanced and stabilized unmixing, data

quality and model selection’’. The subplots are labeled

accordingly.

1. Starting values. Subplots 1a and 1b show an example

where cluster initialization of the parameters in the

EM-algorithm results in a better solution (LL = 120.1)

than initialization by guesstimates (LL = 109.1).

2. Restrictions on parameters.

(a) Standard deviation rj. In subplots 2a1 and 2a2 an

example of the differences in fit between models

with free and equal standard deviations is given.

The rather outlying observation is accommodated

in subplot 2a1 by allowing for a mixture compo-

nent with a very large standard deviation.

Although the model with free rj (with d = 8

parameters vs. d = 6 for the homoscedastic

model) has a substantially higher LL (76.6 vs.

70.5), resulting in a smaller BIC (-116.9 vs.

-113.7), visual inspection shows that the

restricted model has a more reasonable fit.

(b) Means lj. For the marker in subplots 2b1 and 2b2

the equidistance restriction on lj results in a

better solution (LL = 31.2) than the model with

free ljs (LL = 21.9). This is an example of a

pathological situation, because the EM-algorithm

converges to an inferior solution for the full

a b

dc

Fig. 2 Four examples of AFLP

markers from the tomato data

with histograms of band

intensities, and well fitting

normal mixture densities
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model (free ljs) compared to the restricted

(equidistant) model, whereas by definition the

larger model must fit better.

(c) Prior probabilities pj. In subplots 2c1 and 2c2 an

example is shown, where the model with

restricted pj according to HWE [p1 = p2,

p2 = 2p(1 - p), p3 = (1 - p)2] results in a

higher LL (46.8), than the model with free pj

(LL = 46.0). Again, the reason must be conver-

gence of the EM-algorithm to an inferior solution

for the model with free pj, in this case by

allowing a separate component with small mixing

probability for the two hybrids with very low

band intensity.

3. Transformation of band intensity. Subplots 3a1–3a4

show the interplay between data transformation and

restriction on rj. In 3a1 and 3a2 mixture models are

fitted for untransformed band intensities. The

heteroscedasticity has to be taken care of by

allowing for different rjs. In 3a3 and 3a4 the same

AFLP marker is studied, but now the band intensi-

ties are square root transformed. For the square root

transformed intensities, the simpler model with equal

rjs is reasonable.

4. Diagnostics for quality of AFLP band intensity data.

(a) Number of groups. Subplots 4a1 and 4a2 show an

example with a better fitting four-component

mixture, compared to three components, accord-

ing to BIC.

(b) Separation. Three examples of markers with

good, moderate, and poor separation are shown

in subplots 4b1, 4b2, and 4b3. In all three cases

the separation between the Aa and AA is worse

than between aa and Aa.

(c) Outliers. Subplots 4c1 and 4c2 show the effect

of removal of an outlier. A separate component

Fig. 3 Examples of features helping unmixing of marker intensities

for the tomato data. Subplots 1a–b deal with starting values of

parameters; 2a1–a2 restriction on r: hetero- versus homoscedasticity;

2b1–b2 restriction on l: equidistant component means; 2c1–c2 HWE

restriction on p; 3a1–a4 transformation of band intensity; 4a1–a2
number of components of mixture model; 4b1–b3 separation of group

means; 4c1–c2 outliers; five extra information in plot
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of the mixture is devoted to the outlier, if

included. Without the outlier the mixing prob-

abilities are nicely according to HWE.

5. Data visualization. In subplot 5, we include extra

information: minimum and maximum of the raw

intensities, and values of an extra grouping variable,

in this case type of tomato, shown as colored dots

along the top of the graph. The AFLP marker indicates

population substructure, because it is related to tomato

type: all genotypes with high intensities are cherry

tomatoes (shown as green colored dots).

Results for the complete tomato dataset

Parameter initialization

Table 1 shows the comparisons of the two types of

parameter initialization of the EM-algorithm (by guessti-

mates and hierarchical clustering) for two-, three-, four-,

and five-component homoscedastic mixture models for all

1,175 markers. We find that parameter initialization

becomes more critical for more complex models. In case of

mixture models with 2 groups, initialization by guessti-

mates and by hierarchical clustering results in identical

parameter estimates (with maximized log-likelihood dif-

fering less than 10-6) for 95% of the markers. For models

with 3, 4 and 5 groups this percentage is 74, 55, and 34%,

respectively. For models with more than 2 groups, the

cluster initialization outperforms the guesstimates. We

conclude that cluster initialization is a better procedure for

supplying starting values for parameters. To avoid being

trapped in a local maximum, however, we advise to try

other starting values as well, using, e.g., the described

guesstimates. In the following analyses we fit models using

both types of parameter initialization, and choose the

results corresponding to the model with highest LL.

Transformation of band intensity

Table 2 shows the comparison of homoscedastic and

heteroscedastic three-component mixture models by BIC

for a range of power transformations. Between 3 and 15

markers, depending upon the transformation used, are

discarded, because the LL of the heteroscedastic model is

erroneously lower than that of the (smaller) homoscedastic

model, due to convergence to local minima. Among the

different power transformations, the square root transfor-

mation gives most often (63%) variance stabilization.

Table 3 shows the results of the comparisons of two-,

three-, four-, and five-component homoscedastic mixture

models for a range of power transformations. We find some

very distinctive patterns. If the square root transformation is

used, the three-component model is selected most frequently

(for 561 markers). Transformation by power 0.6 shows

almost similar results. With powers larger than 0.5, models

with more groups tend to be favored, probably because large

observations tend to become more outlying, which are

accommodated by more components. Using a transforma-

tion with a power smaller than 0.5, both models with 2, and

with 4 or 5 groups tend to be selected more often. We

conclude from Tables 2 and 3 that the square root transfor-

mation is best, both for variance stabilization and for order

selection.

Diagnostics of data quality

Table 4 shows results for the diagnostics of data quality. In

the comparison of normal mixture models with 2, 3, 4 and

5 components by BIC, we find that the desired model with

three components fits best for 561 markers (&50%). For

158 markers, a model with two components fits best.

Models with more than three components are chosen for

456 markers. Results on the separation of group means in

the best-fitting g-component model are shown in the mid-

dle part of Table 4. Notice that the majority of the markers

(69%) have well separated group means, 31% is moder-

ately separated, and only one marker is poorly separated.

The percentages well separated markers monotonically

decrease with the order g of the model: 89, 80, 53, and

34%, respectively. We conclude that the separation of

group means shows a relationship with the choice of best

fitting model.

The bottom part of Table 4 shows counts of markers

with singletons in the last and first component of the

best fitting g-component mixture model (g = 2, 3, 4, 5).

Table 1 Comparison of parameter initialization by log-likelihood of

fitted models: guesstimates versus hierarchical clustering

Number of groups

2 3 4 5

No difference 1,118 870 651 405

Guesstimate best 30 73 92 142

Cluster best 27 232 432 628

Total 1,175 1,175 1,175 1,175

Table 2 Comparison of homoscedastic and heteroscedastic

three-component mixture models by BIC for a range of power

transformations of band intensities. Percentages of markers with the

homoscedastic model selected as best

Power transformation

0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 1.0

57% 59% 61% 63% 58% 49% 45% 40% 32% 27%
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We find that 62 (5%) of the markers have a first component

with a singleton. This percentage is not heavily dependent

on which model fits best. However, the counts of markers

with a singleton in the last component are much higher, and

now we do see a clear relationship with the best fitting

model: for markers with a best fitting three-component

model, only 42 (7.5%) have a singleton in the last com-

ponent, whereas markers with best fitting two-, four-, and

five-component mixture models have singletons in 25, 26,

and 36% of the cases, respectively.

The problem with outlying observations is that they

may be, but not necessarily are, erroneous: a component

with a singleton may represent a true genotypic situation.

If we assume that rare genotypes AA and aa occur

approximately equally often across all markers, and that

most singletons in the first component represent true aa

genotypes, we conclude that if markers with best fitting

three-component mixture model have singletons in the

last component, most of these represent true AA geno-

types. The much higher percentages of singletons in the

last component found for markers with two-, four- or

five-component models suggest that the intensity is

erroneous outlying (whatever the reason may be), and

need further examination.

Testing for mixing probabilities according

to Hardy–Weinberg equilibrium

Table 5 shows the results of the simulation study to underpin

the LRT for HWE, as described in ‘‘Features for enhanced

and stabilized unmixing, data quality and model selection’’.

We note that for allele frequencies p = 0.3, 0.4, 0.5 the type I

error rates are close to the nominal value 0.05. For smaller

values of p the LRT is slightly conservative, rejecting the null

hypothesis not often enough (with error rates between 0.034

and 0.045). We suspect that the reason is data sparseness: if p

is small, p1 = p2 is close to zero, rendering frequently

mixtures with only 1 or 2 observations for the first compo-

nent. We conclude that the LRT is justified to test for mixing

probabilities according to HWE.

Figure 4 shows an example of a marker with mixing

probabilities according to HWE. First a mixture model with

unrestricted pj is fitted, shown in subplot 4a, with LL = 94.2.

Second, a mixture model with pj according to HWE is fitted,

shown in 4b, with LL = 93.8 and estimated allele frequency

p̂ ¼ 0:78: The hypothesis test of pj according to HWE uses

the test statistic LR = 2 9 (94.2 - 93.8) = 0.8, and has P

value Pðv2
1� 0:8Þ ¼ 0:37: Hence, the null hypothesis of

HWE is not rejected.

Table 3 Model selection of g-component mixtures models by BIC for a range of power transformations. For each power transformation, the

numbers of markers out of 1,175 are shown with a g-component normal mixture model (g = 2, 3, 4, 5) selected as best

g Power transformation

0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 1.0

2 202 197 172 158 147 132 127 122 117 107

3 458 472 505 561 557 517 476 434 357 315

4 334 334 348 332 310 295 308 313 301 261

5 181 172 150 124 161 231 264 306 400 492

Total 1,175 1,175 1,175 1,175 1,175 1,175 1,175 1,175 1,175 1,175

Table 4 Diagnostics for data quality: counts of markers with best

fitting mixture models with 2, 3, 4, or 5 components using BIC,

counts of markers with poor, moderate, or good separation of group

means, split with respect to model choice according to BIC, and

counts of markers with singletons in the first or last component of the

best fitting mixture model

Number of components Total

2 3 4 5

Selected as best 158 561 332 124 1,175

Poor separation 1 0 0 0 1

Moderate separation 17 113 157 82 369

Good separation 140 448 175 42 805

Singleton in first component 7 24 19 12 62

Singleton in last component 39 42 85 44 210

Table 5 Type I error rate of the likelihood ratio test for the null

hypothesis of mixing probabilities according to HWE (a = 0.05) for

simulated intensities of 100 genotypes using a three-component

normal mixture model with means 0.3, 0.5, 0.7, using 10,000

replicates

r Allele frequency p

0.5 0.4 0.3 0.2 0.1

0.025 0.052 0.052 0.055 0.045 0.034

0.030 0.054 0.048 0.054 0.043 0.035

0.035 0.052 0.050 0.052 0.043 0.036

0.040 0.053 0.051 0.047 0.039 0.040

0.045 0.053 0.053 0.049 0.038 0.041

0.050 0.052 0.051 0.049 0.038 0.044
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The results for all selected markers are shown in Table 6

(cf. Table 2 in van Berloo et al. 2008b). If the LRT gives a

P value of [0.05, the null hypothesis of HWE for the

marker is not rejected, and we accept the mixture model

with mixing probabilities according to HWE. We find large

differences in percentages of markers in HWE over the

chromosomes, with low percentages on chromosomes 4, 5,

and 8, to (almost) 100% on chromosome 3 and 9. In the

selection of unmapped markers 53% does not show evi-

dence against HWE.

Conclusions and discussion

In this paper we describe a method for the codominant

scoring of AFLP markers in association panels without

prior knowledge of genotype probabilities. AFLP bands are

scored codominantly by fitting normal mixture models to

the band intensities per marker, using the EM-algorithm.

The EM-algorithm is used for maximum likelihood esti-

mation of normal mixture parameters. It is known for its

slow convergence rate, but proved fast enough for the size

of the example dataset we analyze here. We study a

number of features that facilitate the codominant scoring of

AFLP bands, like different parameter initializations for the

normal mixture fitting, restrictions on parameters (equal

standard deviations, equal or nearly equal distances

between component means, mixing probabilities according

to HWE), easy data transformation, and outlier removal.

Histogram visualization with superimposed normal densi-

ties, and optional classification scores and other grouping

information assists further in the codominant scoring of

the bands. The methods for codominant scoring with

facilitating features are implemented in a program in R,

that is available from the authors.

Traditionally, the output from codominant scoring based

on mixture models is the ‘‘hard’’ classification of genotypes

into categories ‘‘A’’, ‘‘B’’, ‘‘H’’, augmented with regions of

doubt ‘‘C’’ (=‘‘not A’’) and ‘‘D’’ (=‘‘not B’’), for which an

extra region of doubt ‘‘Z’’ (=‘‘B or H or A’’) is needed for

completeness. It remains unclear how cultivars classified

into regions of doubt should be dealt with in further anal-

ysis, depending on the purpose of the subsequent analysis.

For example, in standard QTL mapping a marker label ‘‘C’’

or ‘‘D’’ may be changed into in informative label ‘‘A’’,

‘‘H’’, ‘‘B’’, using information from flanking markers. This

is not possible in association mapping, where only infor-

mation on the marker itself is used. We propose to replace

the hard classification by a fuzzy classification: use the

posterior probabilities of individuals to belong to each of

the three genotype classes AA, Aa, or aa. The posterior

probabilities are direct results of the fitted mixture model

without the intervening threshold needed for a hard

classification. Given the posterior genotype probabilities,

predictors of additive or dominance effects are easy to

calculate, and can be used, e.g., in association studies.

The EM-algorithm for fitting normal mixture models

needs starting values of the parameters. We have studied two

types of starting values, and find that cluster-based starting

values outperform (what we call) guesstimates of the starting

values, especially for more complex models. We recommend

to fit models twice using both methods for starting values,

and choose the fitted model with highest LL.

The EM-algorithm necessarily converges to a local maxi-

mum of the likelihood. Recently, papers appeared describing

attempts for global optimization of the likelihood, using

a b
Fig. 4 Histogram and fitted

normal mixtures with

unrestricted pj (subplot a) and

restricted pj according to HWE

(subplot b)

Table 6 Total numbers of markers and numbers of markers with mixing probabilities according to HWE for a selection of mapped markers on

the 12 chromosomes, and of unmapped markers

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 Unmapped

nr markers 14 5 3 34 28 44 6 7 120 6 19 14 349

nr in HWE 4 3 3 2 5 42 4 1 114 4 10 11 184
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methods from Operations Research (Heath et al. 2009; Jank

2006a, b). Heath et al. (2009) mention that repeat application

of EM (as we propose here) may achieve similar results. A

further study into the global optimization of the likelihood in

mixture models is advisable.

We find empirical evidence favoring the square root

transformation to arrive at homoscedastic normal mixture

models.

We have studied criteria for data quality of AFLP markers

with respect to codominant scoring, focusing on optimal

number of components of the mixture model, separation of

components, and occurrence of outliers. In our example

dataset (an association panel of tomato), the desired normal

mixture model with three components, valid for diploid

organisms, is selected by BIC for about half of the 1,175

polymorphic bands (if choosing from models with 2, 3, 4, or 5

components). A model with more than three components is

selected for about 38% of the markers. Models with more than

three components make no sense for diploid organisms, if the

components of the mixture model correspond to copy num-

bers of a unique DNA fragment for the different genotypes.

However, if an AFLP band would consist of two different

DNA fragments of equal length, which we call collision (see

Gort et al 2006, 2008), a four- or five-component model

cannot be ruled out. A model with two components, which

could have a biologically sound interpretation, is selected by

BIC for only 13% of the markers.

In total, 69% of the markers with best-fitting g-component

models have well separated components. This percentage

declines with g. Models with good separation are to be pre-

ferred, because they will lead to crisp classifications: posterior

probabilities close to 0 or 1. Markers with best fitting two-,

four-, or five-component models have in 25–35% of the cases

a single observation assigned to the component with highest

mean, whereas for markers with best fitting three-component

model this is only 7%. For the component with lowest mean

we find 5–10% singletons in all cases. From this, we cau-

tiously conclude that markers, with two-, four- or five-com-

ponent mixture models selected as best, contain more often an

erroneous outlying observation than markers with three-

component models selected best.

From the above we can distill a recipee for the automatic

selection of AFLP markers, which can be reliably and con-

sistently scored: select markers with best fitting three-com-

ponent mixture model according to BIC, good separation of

components, lack of singletons, robustness against parameter

initialization, and robustness against slight data transforma-

tion. We have seen that many markers do not show the pre-

ferred number of three clusters, or have other characteristics

that make them less optimal. An interesting question is what

should be done with these markers. We do not recommend to

discard these markers blindly, but instead use map informa-

tion to decide on their use. If it concerns a mapped marker with

many other neighbouring markers, it could easily be dis-

carded. If the map is rather sparse, it may be worthwhile to

check what is causing the problem.

The LRT to test for mixing probabilities according to

HWE appears to be reasonable, as we find from a simu-

lation study. In the example association panel, large dif-

ferences in percentages of markers in HWE are found

between the chromosomes, with percentages ranging from

6–18% (chromosomes 4 and 5) to 95–100% (chromosomes

3, 6, and 9). These differences may be caused by popula-

tion substructure in the set of tomato cultivars. We found

that chromosomes 4 and 5 contain markers related to the

cherry/non-cherry subgroups.

Codominant scoring can also be exploited in AFLP

mapping studies. AFLP maps are almost always based on

dominantly scored markers. Piepho (2001) describes how

band intensities can be used to infer the recombination fre-

quency, and next to order the markers on a map. The infor-

mation of band intensities is used by Pérez-Enciso and

Roussot (2002) in a general pedigree to estimate identity by

descent probabilities, to be used in subsequent QTL mapping

strategies. For completeness, we note that AFLP markers can

be codominant in another sense. If two AFLP fragments

differ in size by a few basepairs, e.g., by an indel, but are

identical in other respects, and originate from the same locus,

they can be used as codominant markers. Such bands or

fragments are called allelic markers. Special algorithms and

software can find such markers, and score them codomi-

nantly (Meudt and Clarke 2007). An example of a study of

this type of codominance is Wong et al. (2007).

Liu (2007) urges caution in the use of codominant

scoring because of the non-linear nature of the polymerase

chain reaction, which is at the basis of the AFLP procedure,

and even discourages the use in case of samples from

random mating populations. We have demonstrated,

though, in this study of an unstructured association panel of

hybrids, that large numbers of AFLP markers can be scored

codominantly in a satisfactory way. The main advantage of

codominantly scoring AFLPs is obviously being able to

distinguish heterozygous from homozygous individuals.

Even if some uncertainty about the true genotypic class of a

cultivar remains, and some AFLP bands are lost due to low

data quality, this advantage makes the codominant scoring

of AFLPs in association panels worthwhile.
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Appendix

Software description

We wrote software routines for the codominant scoring of

AFLP profiles in R (Ihaka and Gentleman 1996), which are

available from the authors. In the software we fit and

visualize mixture models, using the EM-algorithm. The

main routine takes, besides the normalized intensities and

optionally the raw intensities, a number of arguments to

allow for the different features described earlier. The

arguments are concisely described below.

The definition of the R function with all

arguments follows here:
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Routine returns the estimated means, stan-

dard deviations, prior probabilities, and posterior probabili-

ties. For mixtures of 2 or 3 groups also the hard classifications

are given. In case of Gaussian mixtures the log likelihood is

returned as well. Based on the data and the model fit, a his-

togram visualization with fitted densities can be produced.

Optionally, the observations can be plotted on the x-axis

using a color coding corresponding to the hard classification.

We use the following color codes: red = B, green = H,

blue = B, violet = C, magenta = D, black = Z.
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